Banerjee, A.K., Harms, N.E., Mukherjee, A.,
Gaskin, J.F., 2020. Niche dynamics and potential distribution of
Butomus umbellatus under current and future climate scenarios in
North America. Hydrobiologia 847, 1505–1520.
https://doi.org/10.1007/s10750-020-04205-1
Bates,
O.K., Bertelsmeier, C., 2021. Climatic niche shifts in introduced
species. Current Biology 31, R1252–R1266.
https://doi.org/10.1016/j.cub.2021.08.035
Bomford,
M., Kraus, F., Barry, S.C., Lawrence, E., 2009. Predicting
establishment success for alien reptiles and amphibians: a role for
climate matching. Biol Invasions 11, 713–724.
https://doi.org/10.1007/s10530-008-9285-3
Briscoe
Runquist, R.D., Lake, T.A., Moeller, D.A., 2021. Improving
predictions of range expansion for invasive species using joint
species distribution models and surrogate co-occurring species.
Journal of Biogeography 48, 1693–1705.
https://doi.org/10.1111/jbi.14105
Broennimann,
O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier,
L., Yoccoz, N.G., Thuiller, W., Fortin, M.-J., Randin, C.,
Zimmermann, N.E., Graham, C.H., Guisan, A., 2012. Measuring
ecological niche overlap from occurrence and spatial environmental
data. Global Ecology and Biogeography 21, 481–497.
https://doi.org/10.1111/j.1466-8238.2011.00698.x
Di
Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., D’Amen,
M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A.,
Pellissier, L., Mateo, R.G., Hordijk, W., Salamin, N., Guisan, A.,
2017. ecospat: an R package to support spatial analyses and modeling
of species niches and distributions. Ecography 40, 774–787.
https://doi.org/10.1111/ecog.02671
Guisan,
A., Petitpierre, B., Broennimann, O., Daehler, C., Kueffer, C., 2014.
Unifying niche shift studies: insights from biological invasions.
Trends in Ecology & Evolution 29, 260–269.
https://doi.org/10.1016/j.tree.2014.02.009
Hutchinson,
G.E., 1957. Concluding Remarks. Cold Spring Harbor Symposia on
Quantitative Biology 22, 415–427.
https://doi.org/10.1101/SQB.1957.022.01.039
Jeschke,
J.M., Strayer, D.L., 2008. Usefulness of Bioclimatic Models for
Studying Climate Change and Invasive Species. Annals of the New York
Academy of Sciences 1134, 1–24.
https://doi.org/10.1196/annals.1439.002
Jiménez‐Valverde,
A., Lobo, J.M., Hortal, J., 2008. Not as good as
they seem: the importance of concepts in species distribution
modelling. Diversity and Distributions 14, 885–890.
https://doi.org/10.1111/j.1472-4642.2008.00496.x
Lauzeral,
C., Leprieur, F., Beauchard, O., Duron, Q., Oberdorff, T., Brosse,
S., 2011. Identifying climatic niche shifts using coarse-grained
occurrence data: a test with non-native freshwater fish. Global
Ecology and Biogeography 20, 407–414.
https://doi.org/10.1111/j.1466-8238.2010.00611.x
Liu,
C., Wolter, C., Xian, W., Jeschke, J.M., 2020. Most invasive species
largely conserve their climatic niche. Proc. Natl. Acad. Sci. U. S.
A. 117, 23643–23651. https://doi.org/10.1073/pnas.2004289117
Loo,
S.E., Nally, R.M., Lake, P.S., 2007. Forecasting New Zealand mudsnail
invasion range: Model comparisons using native and invaded ranges.
Ecological Applications 17, 181–189.
https://doi.org/10.1890/1051-0761(2007)017[0181:FNZMIR]2.0.CO;2
Mahapatra,
B.B., Das, N.K., Jadhav, A., Roy, A., Aravind, N.A., 2023. Global
freshwater mollusc invasion: pathways, potential distribution, and
niche shift. Hydrobiologia.
https://doi.org/10.1007/s10750-023-05299-z
Medley,
K.A., 2010. Niche shifts during the global invasion of the Asian
tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by
reciprocal distribution models. Global Ecology and Biogeography 19,
122–133. https://doi.org/10.1111/j.1466-8238.2009.00497.x
Moyle,
P.B., Light, T., 1996. Biological invasions of fresh water: Empirical
rules and assembly theory. Biological Conservation 78, 149–161.
https://doi.org/10.1016/0006-3207(96)00024-9
Pearman,
P.B., Guisan, A., Broennimann, O., Randin, C.F., 2008. Niche dynamics
in space and time. Trends in Ecology & Evolution 23, 149–158.
https://doi.org/10.1016/j.tree.2007.11.005
Rödder,
D., Engler, J.O., 2011. Quantitative metrics of overlaps in
Grinnellian niches: advances and possible drawbacks. Global Ecology
and Biogeography 20, 915–927.
https://doi.org/10.1111/j.1466-8238.2011.00659.x
Rödder,
D., Ihlow, F., Courant, J., Secondi, J., Herrel, A., Rebelo, R.,
Measey, G.J., Lillo, F., De Villiers, F.A., De Busschere, C.,
Backeljau, T., 2017. Global realized niche divergence in the African
clawed frog Xenopus laevis. Ecol Evol 7, 4044–4058.
https://doi.org/10.1002/ece3.3010
Tingley,
R., Vallinoto, M., Sequeira, F., Kearney, M.R., 2014. Realized niche
shift during a global biological invasion. Proceedings of the
National Academy of Sciences 111, 10233–10238.
https://doi.org/10.1073/pnas.1405766111
Torres,
U., Godsoe, W., Buckley, H.L., Parry, M., Lustig, A., Worner, S.P.,
2018. Using niche conservatism information to prioritize hotspots of
invasion by non‐native
freshwater invertebrates in New Zealand. Diversity and Distributions
24, 1802–1815.
https://doi.org/10.1111/ddi.12818
Vivó-Pons,
A., Blomqvist, M., Törnroos, A., Lindegren, M., 2023. A trait-based
approach to assess niche overlap and functional distinctiveness
between non-indigenous and native species. Ecology Letters 26,
1911–1925. https://doi.org/10.1111/ele.14315
Yang,
R., Cao, R., Gong, X., Feng, J., 2023. Large shifts of niche and
range in the golden apple snail (Pomacea canaliculata), an aquatic
invasive species. Ecosphere 14, e4391.
https://doi.org/10.1002/ecs2.4391
Zhang,
R., Gao, Y., Wang, R., Liu, S., Yang, Q., Li, Y., Lin, L., 2025.
Analyzing Possible Shifts in the Climatic Niche of Pomacea
canaliculata Between Native and Chinese Ranges. Biology 14,
1127. https://doi.org/10.3390/biology14091127