Banerjee, A.K., Harms, N.E., Mukherjee, A., Gaskin, J.F., 2020. Niche dynamics and potential distribution of Butomus umbellatus under current and future climate scenarios in North America. Hydrobiologia 847, 1505–1520. https://doi.org/10.1007/s10750-020-04205-1
Bates, O.K., Bertelsmeier, C., 2021. Climatic niche shifts in introduced species. Current Biology 31, R1252–R1266. https://doi.org/10.1016/j.cub.2021.08.035
Bomford, M., Kraus, F., Barry, S.C., Lawrence, E., 2009. Predicting establishment success for alien reptiles and amphibians: a role for climate matching. Biol Invasions 11, 713–724. https://doi.org/10.1007/s10530-008-9285-3
Briscoe Runquist, R.D., Lake, T.A., Moeller, D.A., 2021. Improving predictions of range expansion for invasive species using joint species distribution models and surrogate co-occurring species. Journal of Biogeography 48, 1693–1705. https://doi.org/10.1111/jbi.14105
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N.E., Graham, C.H., Guisan, A., 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R.G., Hordijk, W., Salamin, N., Guisan, A., 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787. https://doi.org/10.1111/ecog.02671
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., Kueffer, C., 2014. Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution 29, 260–269. https://doi.org/10.1016/j.tree.2014.02.009
Hutchinson, G.E., 1957. Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039
Jeschke, J.M., Strayer, D.L., 2008. Usefulness of Bioclimatic Models for Studying Climate Change and Invasive Species. Annals of the New York Academy of Sciences 1134, 1–24. https://doi.org/10.1196/annals.1439.002
Jiménez‐Valverde, A., Lobo, J.M., Hortal, J., 2008. Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions 14, 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x
Lauzeral, C., Leprieur, F., Beauchard, O., Duron, Q., Oberdorff, T., Brosse, S., 2011. Identifying climatic niche shifts using coarse-grained occurrence data: a test with non-native freshwater fish. Global Ecology and Biogeography 20, 407–414. https://doi.org/10.1111/j.1466-8238.2010.00611.x
Liu, C., Wolter, C., Xian, W., Jeschke, J.M., 2020. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. U. S. A. 117, 23643–23651. https://doi.org/10.1073/pnas.2004289117
Loo, S.E., Nally, R.M., Lake, P.S., 2007. Forecasting New Zealand mudsnail invasion range: Model comparisons using native and invaded ranges. Ecological Applications 17, 181–189. https://doi.org/10.1890/1051-0761(2007)017[0181:FNZMIR]2.0.CO;2
Mahapatra, B.B., Das, N.K., Jadhav, A., Roy, A., Aravind, N.A., 2023. Global freshwater mollusc invasion: pathways, potential distribution, and niche shift. Hydrobiologia. https://doi.org/10.1007/s10750-023-05299-z
Medley, K.A., 2010. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecology and Biogeography 19, 122–133. https://doi.org/10.1111/j.1466-8238.2009.00497.x
Moyle, P.B., Light, T., 1996. Biological invasions of fresh water: Empirical rules and assembly theory. Biological Conservation 78, 149–161. https://doi.org/10.1016/0006-3207(96)00024-9
Pearman, P.B., Guisan, A., Broennimann, O., Randin, C.F., 2008. Niche dynamics in space and time. Trends in Ecology & Evolution 23, 149–158. https://doi.org/10.1016/j.tree.2007.11.005
Rödder, D., Engler, J.O., 2011. Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Global Ecology and Biogeography 20, 915–927. https://doi.org/10.1111/j.1466-8238.2011.00659.x
Rödder, D., Ihlow, F., Courant, J., Secondi, J., Herrel, A., Rebelo, R., Measey, G.J., Lillo, F., De Villiers, F.A., De Busschere, C., Backeljau, T., 2017. Global realized niche divergence in the African clawed frog Xenopus laevis. Ecol Evol 7, 4044–4058. https://doi.org/10.1002/ece3.3010
Tingley, R., Vallinoto, M., Sequeira, F., Kearney, M.R., 2014. Realized niche shift during a global biological invasion. Proceedings of the National Academy of Sciences 111, 10233–10238. https://doi.org/10.1073/pnas.1405766111
Torres, U., Godsoe, W., Buckley, H.L., Parry, M., Lustig, A., Worner, S.P., 2018. Using niche conservatism information to prioritize hotspots of invasion by non‐native freshwater invertebrates in New Zealand. Diversity and Distributions 24, 1802–1815. https://doi.org/10.1111/ddi.12818
Vivó-Pons, A., Blomqvist, M., Törnroos, A., Lindegren, M., 2023. A trait-based approach to assess niche overlap and functional distinctiveness between non-indigenous and native species. Ecology Letters 26, 1911–1925. https://doi.org/10.1111/ele.14315
Yang, R., Cao, R., Gong, X., Feng, J., 2023. Large shifts of niche and range in the golden apple snail (Pomacea canaliculata), an aquatic invasive species. Ecosphere 14, e4391. https://doi.org/10.1002/ecs2.4391
Zhang, R., Gao, Y., Wang, R., Liu, S., Yang, Q., Li, Y., Lin, L., 2025. Analyzing Possible Shifts in the Climatic Niche of Pomacea canaliculata Between Native and Chinese Ranges. Biology 14, 1127. https://doi.org/10.3390/biology14091127